
# IB IL AO 2/U/BP

# INTERBUS Inline Terminal With Two Analog Voltage Outputs



Data Sheet 5660A

05/2000





This data sheet is intended to be used in conjunction with the INTERBUS Inline System Manual IB IL SYS PRO UM E.

## **Function**

The terminal is designed for use within an INTERBUS Inline station. It is used to output analog voltage signals.

#### **Features**

- Two analog signal outputs
- Actuator connection (using 2-wire technology and shield connection)
- Voltage ranges:
   -10 V to +10 V (13-bit resolution) and
   0 V to +10 V (12-bit resolution)
- Output value data available in two formats (IB IL and IB ST)
- Parameterizable behavior of the outputs in the event of an error
- Process data update including conversion time of the digital/analog converter < 1 ms</li>
- Very good output driver properties, therefore also suitable for long actuator cables
- Diagnostic indicators

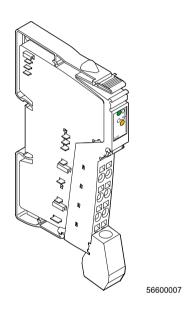



Figure 1 Terminal IB IL AO 2/U/BP with connectors



Please note that the connector is not supplied with the terminal. Please refer to Ordering Data on page 31 to order the appropriate connectors for your application.

## IB IL AO 2/U/BP

# **Table of Contents**

| Function                                           | 1  |
|----------------------------------------------------|----|
| Installation Instruction                           | 4  |
| Internal Circuit Diagram                           | 5  |
| Electrical Isolation                               | 6  |
| Connection                                         | 6  |
| Connection Example                                 | 7  |
| Connecting Shielded Cables to the Shield Connector | 8  |
| Programming Data                                   | 10 |
| INTERBUS Process Data Word                         | 11 |
| Output Value Representation Formats                | 15 |
| Output Behavior                                    | 20 |
| Input Behavior                                     | 22 |
| Parameterization                                   | 24 |
| Technical Data                                     | 26 |
| Ordering Data                                      | 31 |



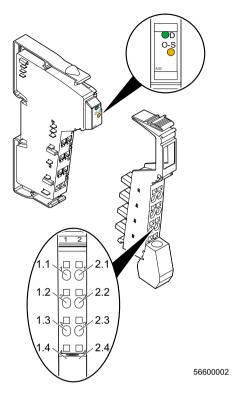



Figure 2 IB IL AO 2/U/BP with appropriate connector

#### **Local Diagnostic and Status Indicators**

| Des. | Color  | Meaning           |
|------|--------|-------------------|
| D    | Green  | Bus diagnostics   |
| O-S  | Orange | Default state set |

#### **Terminal Assignment**

| Terminal Point | Signal | Assignment            |
|----------------|--------|-----------------------|
| 1.1            | U1     | Voltage output 1      |
| 2.1            | U2     | Voltage output 2      |
| 1.2, 2.2       | _      | Not used              |
| 1.3, 2.3       | AGND   | Voltage output ground |
| 1.4, 2.4       | Shield | Shield connection     |

#### **Parameterized Default Upon Delivery**

When the module is delivered, the parameters are set as follows:

Data format: IB IL

Behavior of the outputs Outputs maintain the in the event of an error: last value (Hold)

Output range: -10 V to +10 V

The following terminal parameters can be configured according to conditions, using the process data:

Data format: IB ST

Behavior of the outputs Outputs are reset to

in the event of an error: 0 V (Reset)

Output range: 0 V to +10 V

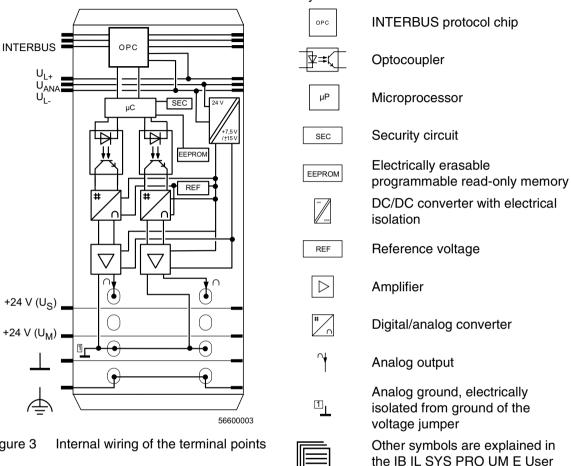


When parameterizing you must switch to parameterization mode. The connection procedure is described in "Parameterization" on page 24.

## **Installation Instructions**

High current flowing through the voltage jumpers  $U_M$  and  $U_S$  causes the temperature of the voltage jumpers and the internal temperature of the terminal to rise. Note the following instruction to keep the current flowing through the voltage jumpers of the analog terminals as low as possible:




#### All of the analog terminals need a separate main circuit!

If this is not possible in your application and if you are using analog terminals in a main circuit together with other terminals, make sure you are placing the analog terminals behind all the other terminals at the end of the main circuit.

Please note the derating curve on page 27.



# **Internal Circuit Diagram**



Kev:

Figure 3

Manual.

## **Electrical Isolation**

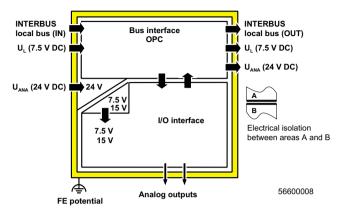



Figure 4 Electrical isolation of the individual function areas

## Connection



Analog actuators with a cable length of < 10 m (32.808 ft.) can be connected with unshielded twisted-pair cables.



Connect analog actuators with a cable length of > 10 m (32.808 ft.) with shielded twisted-pair cables.

Connect one end of the shielding to PE protective earth ground. Fold the outer cable sheath back and connect the shield to the terminal via the shield connector clamp (with strain relief). The clamp connects the shield directly to FE (functional earth ground) on the terminal side.



Ensure that the braided shield is 15 mm (0.591 in.) longer than the strain relief, when connecting a shielded actuator cable to the I/O connector. Connect the actuator cable as described in "Connecting Shielded Cables to the Shield Connector" on page 8.

# **Connection Example**



Use a connector with shield connection when installing the actuators. Figure 5 shows the connection schematically (without shield connector).

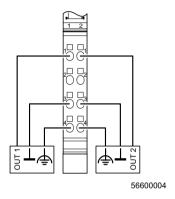



Figure 5 Connection of two voltage actuators with shield connection, using 2-wire technology

# **Connecting Shielded Cables to the Shield Connector**

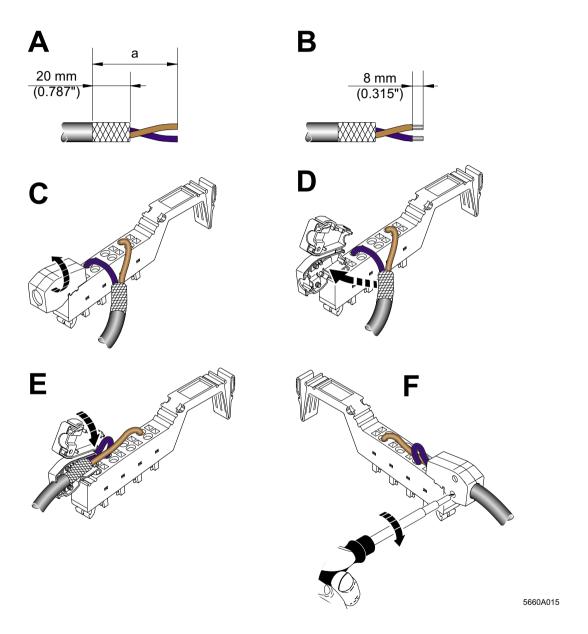



Figure 6 Connecting the shield via the shield connector



The diameter of the actuator cable is usually too large to allow the cable to be installed into the strain relief of the shield connector with sheathed and folded shield. The connection procedure for this cable therefore differs from the connection procedure described in the I/O Systems Manual. The comparative differences with the I/O Systems Manual are marked in bold text.

Connection of the cables according to Figure 6 should be carried out as follows:

### **Stripping the Cables**

- Strip the outer cable sheath to the desired length (a). (1)
  - The desired length (a) depends on the connection position of the wires and whether the wires should have a large or small amount of space between the connection point and the shield connection.
- Shorten the braided shield to 20 mm (0.787 in.). (A)
- Do **not** fold the braided shield back over the outer sheath. (B)
- Remove the protective foil.
- Strip approx. 8 mm (0.315 in.) off the wires.
   (B)



Inline wiring is normally without ferrules. However, it is possible to use ferrules. If using ferrules, make sure they are properly crimped.

# Wiring the Connectors (According to the User Manual)

- Push a screwdriver into the slot above the appropriate terminal point, so that you can insert the wire into the terminal opening. Phoenix Contact recommends using the SZF 1-0.6 x 3.5 mm (0.039-0.024 in. x 0.138 in.) screwdriver (Order No. 12 04 51 7; see Phoenix Contact Catalog Part 3/4 "Marking/Mounting/Tools").
- Insert the wire. Pull the screwdriver out of the opening. The wire is now clamped.

The connector pin assignment can be found in the table on page 3.

### Connecting the Shield

- Open the shield connector (see user manual). (C)
- Place the shield clamp in the shield connector corresponding to the cable width (see User Manual).
- Place the cable in the shield connection. (D)
   Push the outer cable sheath up to the shield clamp. The wires with the braided shield must be underneath the shield clamp. The braided shield must project approximately 15 mm (0.591 in.) over the shield clamp.
- Close the shield connector. (E)
- Fasten the screws for the shield connector using a screwdriver. (F)

# **Programming Data**

| ID code                 | 5B <sub>hex</sub> (91 <sub>dec</sub> ) |
|-------------------------|----------------------------------------|
| Length code             | 02 <sub>hex</sub>                      |
| Process data channel    | 32 bits                                |
| Input address area      | 4 bytes                                |
| Output address area     | 4 bytes                                |
| Parameter channel (PCP) | 0 byte                                 |
| Register length (bus)   | 4 bytes                                |

# **INTERBUS Process Data Words**

## **Assignment of the Terminal Points to the Process Data Output Words**

| (Word.bit) | Byte             |                           |                                     |    |    |    |    |   | Wo | rd 0 |        |   |   |   |   |   |   |  |
|------------|------------------|---------------------------|-------------------------------------|----|----|----|----|---|----|------|--------|---|---|---|---|---|---|--|
| view       | Bit              | 15                        | 14                                  | 13 | 12 | 11 | 10 | 9 | 8  | 7    | 6      | 5 | 4 | ფ | 2 | 1 | 0 |  |
| (Byte.bit) | yte.bit) Byte    |                           | Byte 0                              |    |    |    |    |   |    |      | Byte 1 |   |   |   |   |   |   |  |
| view       | Bit              | 7                         | 6                                   | 5  | 4  | 3  | 2  | 1 | 0  | 7    | 6      | 5 | 4 | 3 | 2 | 1 | 0 |  |
| Assignment | IB IL format     | SB Channel 1 output value |                                     |    |    |    |    |   |    |      |        |   |   |   |   |   |   |  |
| Assignment | IB ST format     | SB                        | SB Channel 1 output value 0 0       |    |    |    |    |   |    |      |        | 0 | 0 |   |   |   |   |  |
| Terminal   | Signal           | Ter                       | erminal point 1.1: Voltage output 1 |    |    |    |    |   |    |      |        |   |   |   |   |   |   |  |
| points     | Signal reference | Terminal point 1.3        |                                     |    |    |    |    |   |    |      |        |   |   |   |   |   |   |  |
|            | Shield (FE)      | Terminal point 1.4        |                                     |    |    |    |    |   |    |      |        |   |   |   |   |   |   |  |

| (Word.bit) | Byte             |                           |                                 |        |       |       |       |      | Wo   | rd 1   |   |   |   |   |   |   |   |
|------------|------------------|---------------------------|---------------------------------|--------|-------|-------|-------|------|------|--------|---|---|---|---|---|---|---|
| view       | Bit              |                           | 14                              | 13     | 12    | 11    | 10    | 9    | 8    | 7      | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| (Byte.bit) | Byte             |                           |                                 | Byte 2 |       |       |       |      |      | Byte 3 |   |   |   |   |   |   |   |
| view       | Bit              | 7                         | 6                               | 5      | 4     | 3     | 2     | 1    | 0    | 7      | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| Assignment | IB IL format     | SB Channel 2 output value |                                 |        |       |       |       |      |      |        |   |   |   |   |   |   |   |
| Assignment | IB ST format     | SB                        | SB Channel 2 output value 0 0 0 |        |       |       |       |      |      |        |   |   |   | 0 |   |   |   |
| Terminal   | Signal           | Ter                       | mina                            | ıl po  | int 2 | .1: V | olta: | ge o | utpu | t 2    |   |   |   |   |   |   |   |
| points     | Signal reference | Ter                       | Terminal point 2.3              |        |       |       |       |      |      |        |   |   |   |   |   |   |   |
|            | Shield (FE)      | Ter                       | erminal point 2.4               |        |       |       |       |      |      |        |   |   |   |   |   |   |   |

## SB Sign bit

0 In "IB ST" bits 2 through 0 are irrelevant. Set these bits to "0".

## **Assignment of the Process Data Input Words**

| (Word.bit) | Byte |                          |                         |    |    |    |    |              | Wo | rd 0 |   |   |   |   |   |   |   |
|------------|------|--------------------------|-------------------------|----|----|----|----|--------------|----|------|---|---|---|---|---|---|---|
| view       | Bit  | 15                       | 14                      | 13 | 12 | 11 | 10 | 9            | 8  | 7    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| (Byte.bit) | Byte |                          | Byte 0 Byte 1           |    |    |    |    |              |    |      |   |   |   |   |   |   |   |
| view       | Bit  | 7                        | 7 6 5 4 3 2 1 0 7 6 5 4 |    |    |    |    |              | 3  | 2    | 1 | 0 |   |   |   |   |   |
| Assignment |      | SB Mirrored channel 1 of |                         |    |    |    |    | output value |    |      |   |   |   | В | Н |   |   |

| (Word.bit) | Byte |    |                 |    |     |      |       |      | Wo     | rd 1  |       |     |     |     |   |   |   |
|------------|------|----|-----------------|----|-----|------|-------|------|--------|-------|-------|-----|-----|-----|---|---|---|
| view       | Bit  | 15 | 14              | 13 | 12  | 11   | 10    | 9    | 8      | 7     | 6     | 5   | 4   | З   | 2 | 1 | 0 |
| view       | Byte |    |                 |    | Byt | e 2  |       |      |        |       |       |     | Byt | e 3 |   |   |   |
|            | Bit  | 7  | 7 6 5 4 3 2 1 0 |    |     |      |       | 7    | 6      | 5     | 4     | 3   | 2   | 1   | 0 |   |   |
| Assignment |      |    |                 |    | Mir | rore | d cha | anne | el 2 d | outpi | ut va | lue |     |     | F | В | Н |

SB Sign bit

F Output data format

B Voltage range

H Hold/Reset

## **INTERBUS OUT Process Data Output Words**

The process data output words specify the output values in each cycle.

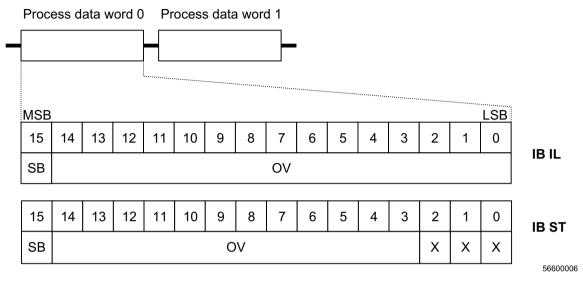


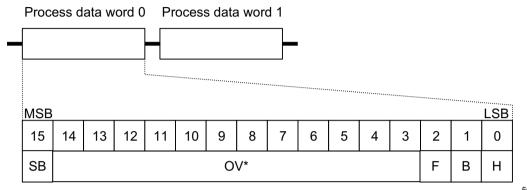

Figure 7 Process data output words in IB IL and IB ST formats

SB Sign bit

OV Output value

X Bit irrelevant

MSB Most significant bit


LSB Least significant bit



Set the irrelevant bits to 0.

#### **INTERBUS IN Process Data Input Words**

Bits 15 through 3 of the process data output values are mirrored in the process data input words. Bit 15 is the sign bit. Bits 2 through 0 are available as status bits. They contain information about the parameterized behavior of the terminal.



56600010

Figure 8 Process data input words

SB Sign bit

OV\* Mirrored output value

F Output data format

B Voltage range

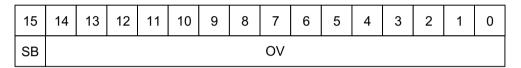
H Hold/Reset

MSB Most significant bit LSB Least significant bit

Bits 2 through 0 have the following meaning:

| Bit | Designation | Meaning            | Bit x = 0      | Bit x = 1    |
|-----|-------------|--------------------|----------------|--------------|
| 2   | F           | Output data format | IL             | ST           |
| 1   | В           | Voltage range      | -10 V to +10 V | 0 V to +10 V |
| 0   | Н           | Hold/Reset         | Hold           | 0            |

# **Output Value Representation Formats**




The IB IL AO 2/U/BP terminal has format compatibility with the IB IL AI 2/SF input terminal. This means that it is possible to use these terminals in multiplexer systems (e.g., IB IL MUX).

"IB IL" is the default format. To ensure that the terminals can be operated in previously used ST data formats, the output value representation can be switched to "IB ST" format.

#### "IB IL" Format

The output value is represented in bits 14 through 0. An additional bit (bit 15) is available as a sign bit.



5660A016

Figure 9 Output value representation in "IB IL" format (15 bits + sign bit)

SB Sign bit

OV Output value

16

## Significant Output Values in "IB IL" Format

The IB IL 24 AO 2 /U/BP terminal has two analog output channels that can supply voltages from -10 V to +10 V with 13-bit resolution.

Output range -10 V to +10 V

| T)    | Data Word<br>wo's<br>plement) | -10 V to +10 V<br>U <sub>output</sub> | Remark                         |
|-------|-------------------------------|---------------------------------------|--------------------------------|
| hex   | dec                           | V                                     |                                |
| <7FFF | 32767                         | +10.837                               |                                |
| >7F00 | 32512                         | +10.837                               |                                |
| 7F00  | 32512                         | +10.837                               |                                |
| 7530  | 30000                         | +10.0                                 |                                |
| 8000  | 8                             | +2.667 mV                             | Smallest DAC quantization step |
| 0001  | 1                             | +333.33 μV                            | Process data resolution        |
| 0000  | 0                             | 0                                     |                                |
| FFF8  | -8                            | -2.667 mV                             |                                |
| 8AD0  | -30000                        | -10.0                                 |                                |
| 8100  | -32512                        | -10.837                               |                                |
| <8100 | Processed of                  | differently:                          |                                |
| 8001  | -32767                        | +10.837                               | (Over range)                   |
| 8080  | -32640                        | -10.837                               | (Under range)                  |
| 80xx  | (Other)                       | Maintain last value                   |                                |

5660A

For the 0 V to 10 V output range only the upper range is used (see Figure 7). The resolution for this range is thus limited to 12 bits.



Bits 2 through 0 are not always considered as "irrelevant bits". For use as a Field Multiplexer, error messages as well as over or under range information must be evaluated appropriately. Over range ( $8001_{hex}$ ) outputs 10.837 V, under range ( $8080_{hex}$ ) 0 V. With an error code ( $1000\ 0000\ 0xxx\ xxxx0_{bin}$ ) the last valid value from the digital/analog converter is output.

Output range 0 V to 10 V

|        | Data Word omplement) | 0 V to 10 V<br>U <sub>Output</sub> | Comment                        |
|--------|----------------------|------------------------------------|--------------------------------|
| hex    | dec                  | V                                  |                                |
| ≤ 7FFF | 32512                | +10.837                            |                                |
| > 7500 | 32512                | +10.837                            |                                |
| 7F00   | 32512                | +10.837                            |                                |
| 7530   | 30000                | +10.0                              |                                |
| 8000   | 8                    | +2.667 mV                          | Smallest DAC quantization step |
| 0001   | 1                    | +333.33 μV                         | Process data resolution        |
| < 0000 | 0                    | 0                                  |                                |
| < 8100 | Processed se         | eparately:                         |                                |
| 8001   | -32767               | +10.837                            | (Over range)                   |
| 8080   | -32640               | 0                                  | (Under range)                  |
| 80xx   | (Other)              | Maintain last value                |                                |



The 80xx<sub>hex</sub> range is reserved exclusively for error and message codes.

#### **IB ST Format**

The output value is represented in bits 14 through 3. Bit 15 is available as sign bit. Bits 2 through 0 are irrelevant.

This format corresponds to the data format used on INTERBUS ST modules.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| SB |    |    |    |    |    | 0 | V |   |   |   |   |   | Х | Х | Х |

56600011

Figure 10 Output value representation in IB ST format (12 bits + sign bit)

SB Sign bit

OV Output value

X Irrelevant bit (Set this bit to 0.)



Bits 2 through 0 are not always considered as "irrelevant bits". The values 7FF9<sub>hex</sub> or 8001<sub>hex</sub> are recognized as over or under ranges and interpreted as 7FF8<sub>hex</sub> or 8008<sub>hex</sub> and further processed as normal process data. In this way MUX-compatibility is ensured. The only exceptions are error codes (with ST only an open circuit). With this error code (xxxx xxxx xxxx xxx1x<sub>bin</sub>) the last value is maintained.

## Significant Output Values in "IB ST" Format

Output range 0 V to 10 V

| Output Data Word<br>(Two's Complement) | 0 V to 10 V<br>U <sub>output</sub> |
|----------------------------------------|------------------------------------|
| hex                                    | V                                  |
| > 7FF8                                 | 9.9975                             |
| 7FF8                                   | 9.9975                             |
| 4000                                   | 5.0                                |
| 0008                                   | 0.002441                           |
| < 0000                                 | 0                                  |

Output range -10 V to +10 V

| Output Data Word<br>(Two's Complement) | -10 V to +10 V<br>U <sub>output</sub> |
|----------------------------------------|---------------------------------------|
| hex                                    | V                                     |
| > 7FF8                                 | 9.9975                                |
| 7FF8                                   | 9.9975                                |
| 0008                                   | 0.002441                              |
| 0000                                   | 0                                     |
| FFF8                                   | -0.002441                             |
| 8008                                   | -9.9975                               |
| < 8008                                 | -9.9975                               |

# **Output Behavior**

# Output Behavior During Error-Free Operation (Normal Operation)

On power up during normal operation, the output range and the data format are read using the terminal EEPROM (non-volatile).

Volatile parameterization is also possible for these settings as well as for the behavior of the terminal in the event of an error. This parameterization can be carried out for runtime by a process data sequence.

#### Output Behavior in the Event of an Error

In the event of an error the outputs behave as set in the EEPROM (non-volatile) or as subsequently parameterized (volatile). This means that the outputs maintain the last value (HOLD, default setting) or are reset to 0 (RESET, parameterizable).

### **Output Behavior of the Voltage Output**



Take output behavior (in the event of an error) into account when configuring your system!

| Switching Operation/<br>State of the Supply<br>Voltage | Marginal<br>Condition   | INTERBUS OUT Process Data Word (hexadecimal) | Behavior/Status of the<br>Analog Outputs                             |
|--------------------------------------------------------|-------------------------|----------------------------------------------|----------------------------------------------------------------------|
| U <sub>ANA</sub> from 24 V to 0 V                      | U <sub>L</sub> = 0 V    | xxxx                                         | 0 V                                                                  |
| U <sub>ANA</sub> from 24 V to 0 V                      | U <sub>L</sub> = 7.5 V  | xxxx                                         | 0 V                                                                  |
| Bus in Stop                                            | U <sub>ANA</sub> = 0 V  | xxxx                                         | 0 V                                                                  |
| Bus in Stop                                            | U <sub>ANA</sub> = 24 V | XXXX                                         | Maintain last value                                                  |
| Bus reset<br>(e.g., remote bus cable<br>break)         |                         | xxxx                                         | Maintain last value<br>(default setting) or<br>0 V (parameterizable) |

U<sub>ANA</sub> Analog supply voltage of the terminal

U<sub>L</sub> Supply voltage of the module electronics (communications power)

xxxx Any value in the range from  $0000_{hex}$  to  $FFFF_{hex}$ .

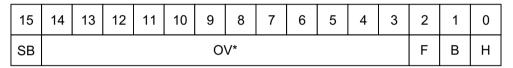
# Response of the Control System or Computer to a Hardware Signal for Different Control or Computer Systems

| Signal    | Control                     | Status After the Switching Operation |                  |
|-----------|-----------------------------|--------------------------------------|------------------|
|           | or<br>Computer System       | INTERBUS OUT                         | Analog Output    |
|           | Computer System             | Process Data Word (hexadecimal)      | U <sub>out</sub> |
| NORM*     | AEG Schneider<br>Automation | 0000                                 | 0 V              |
| BASP      | Siemens S5                  | 0000                                 | 0 V              |
| CLAB      | Bosch                       | 0000                                 | 0 V              |
| SYSFAIL   | VME                         | 0000                                 | 0 V              |
| SYSFAIL   | PC                          | 0000                                 | 0 V              |
| CLEAR OUT | Moeller IPC                 | 0000                                 | 0 V              |

<sup>\*</sup> On controller boards for AEG Schneider Automation control systems it is possible to set the NORM signal so that the INTERBUS OUT process data word and the analog output maintain the last value.

## Response of the Voltage Output to a Control Command From the INTERBUS Controller Board

| Command            | Status After the Switching Operation |                                                                |
|--------------------|--------------------------------------|----------------------------------------------------------------|
|                    | INTERBUS OUT Analog Output           |                                                                |
|                    | Process Data Word (hexadecimal)      | U <sub>out</sub>                                               |
| STOP               | XXXX                                 | Maintain last value                                            |
| ALARM STOP (reset) | xxxx                                 | Maintain last value (default setting) or 0 V (parameterizable) |


# **Input Behavior**

When analyzing input behavior, a distinction is made between normal operation and parameterization mode. Input behavior in parameterization mode is described in "Parameterization" on page 24.

During **error-free normal operation**, the output data is mirrored in the input words as "acknowledgment" in bits 15 through 3 as soon it is transmitted to the DAC.

Bits 2 through 0 are available as status bits and are used to display and read the set behavior of the terminal.

As the IB IL AO 2/U/BP terminal evaluates bits 15 through 3 as data bits both in IB IL and IB ST format, only these 13 bits are mirrored in the input data word (see notes on error codes, over and under ranges).



56600014

Figure 11 Input data in IB IL and IB ST formats

SB Sign bit

OV\* Mirrored output value

F Data format 0: IB IL 1: IB ST

B Output range 0: -10 V to +10 V 1: 0 V to 10 V

H Hold/Reset 0: Hold 1: Reset

If an **error** is detected by the terminal, it is indicated by an error code in the first process input data word. Possible error codes can be found in the following table.

## **Error Codes:**

| Output Data Word (Two's Complement) | Cause                                                                                              | Remedy                                                                                                            |
|-------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| hex                                 |                                                                                                    |                                                                                                                   |
| 8010                                | This code can only appear i have two causes:                                                       | n parameterization mode and can                                                                                   |
|                                     | 1 Carry out configuration                                                                          | Continue configuration                                                                                            |
|                                     | In step 2 of parameterization the code 8055 <sub>hex</sub> in the firs No errors indicated at this |                                                                                                                   |
|                                     | 2 Configuration invalid                                                                            | Check parameterization                                                                                            |
| 8020                                | DAC voltage falls below the permissible value  I/O error occurs.                                   | Check the bus terminal voltage supply; Check that the voltage jumpers are connecting safely; Replace the terminal |
| 8040                                | Terminal defective                                                                                 | Replace the terminal                                                                                              |



The error codes overwrite the status bits (Bits 2 through 0) with "0". This means that in IB ST data format, it is also possible to clearly distinguish valid process data.

## **Parameterization**

When the module is delivered, the terminal You can configure the following terminal parameters are set as follows:

parameters according to your conditions, using

**IBST** 

the process data:

Data format:

Data format: IB II

Behavior of the outputs Outputs maintain the in the event of an error: last value (Hold)

Behavior of the outputs Outputs are reset to

Output range: -10 V to +10 V in the event of an error: 0V (Reset) 0 V to +10 V Output range:

In order to parameterize the terminal you must change to parameterization mode. In the first process data output word, transmit codes 8033<sub>hex</sub> and 8055<sub>hex</sub> one after the other.



In order not to change accidentally to parameterization mode, you should set bits 2 through 0 to 0 in normal operation when transmitting process data.

### Parameterizing the Terminal:

| Step 1: | Transmission of code 8033 <sub>hex</sub> in the first process data output word.                                                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | In bits 15 through 3 of the first process data input word this code is acknowledged as a normal process data item.                                                                 |
|         | For every subsequent code which is not equal to 8055 <sub>hex</sub> in the first process data word, normal operation continues and the code is interpreted as a process data item. |
| Step 2: | Transmission of code 8055 <sub>hex</sub> in the first process data output word.                                                                                                    |
|         | Acknowledgment is via code 8010 <sub>hex</sub> in the first input word.                                                                                                            |
|         | In this case, this code does not indicate an error, but shows that a configuration word is eventually expected (in step 3).                                                        |
|         | For every subsequent code that is not equal to $80xx_{hex}$ in the first process data word, parameterization mode is quit.                                                         |

#### Step 3:

### Transmission of the parameterization code: 1000 0000 1000 p<sub>3</sub>p<sub>2</sub>p<sub>1</sub>1<sub>bin</sub>.

Where  $p_x$  are the terminal parameters:

p<sub>3</sub>: Data format (0: IB IL; 1: IB ST)

p<sub>2</sub>: Output range (0: -10 V to 0 V; 1: 0 V through 10 V)

p<sub>1</sub>: Reset behavior (0: Hold; 1: Reset)

Acceptance of the value is confirmed in bits 15 through 3 of the first input word through mirroring of the code. If an invalid configuration is displayed, code 8010<sub>hex</sub> appears in the first input data word, which indicates the error "Invalid Configuration".

This step can be repeated as often as you like.



If a code that is not equal to  $80xx_{hex}$  is transmitted in the first process data word, parameterization mode is quit without the parameterization taking effect.

#### Step 4:

In this step you specify, whether the parameterization stored in the EEPROM is volatile (dynamic) or non-volatile (static).

**Volatile parameterization:** After a power up this setting is no longer available. Subsequent operation uses the settings stored in the EEPROM.

Transmission of code 8077<sub>hex</sub>.

**Non-volatile parameterization:** The parameterization is stored in the EEPROM. After a power up this parameterization from the EEPROM is used.

Transmission of code 8099<sub>hex</sub>.

After writing  $8077_{\text{hex}}$  or  $8099_{\text{hex}}$  the parameterization takes effect and parameterization mode is quit. This is displayed in the first input word through the mirroring of code  $8077_{\text{hex}}$  or  $8099_{\text{hex}}$ . These values have a dedicated acknowledgment function. Only the next process data item is processed as normal.



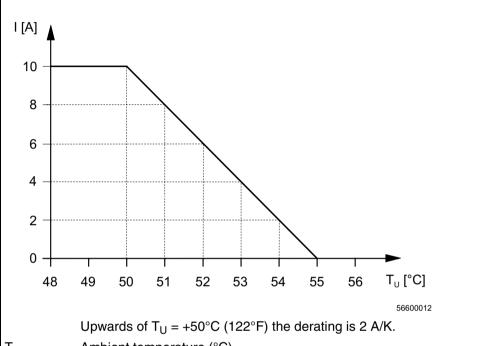
If parameterization was aborted, it is possible to switch to parameterization mode using a restart with step 1.

The orange O-S LED on the terminal indicates whether the original configuration is present or if the current configuration differs from the default configuration of the terminal upon delivery. The LED is lit if the parameterization is that of the default upon delivery.

# **Technical Data**

| General Data                                                                                                                                  |                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Housing dimensions (width x height x depth)                                                                                                   | 12.2 mm x 120 mm x 71.5 mm<br>(0.480 in. x 4.724 in. x 2.815 in.) |  |
| Weight                                                                                                                                        | 48 g (without connector)                                          |  |
| Operating mode                                                                                                                                | Process data operation with 2 words                               |  |
| Actuator connection type                                                                                                                      | 2-wire technology                                                 |  |
| Permissible temperature (operation)                                                                                                           | -25°C to +55°C (-13°F to 131°F)                                   |  |
| Permissible temperature (storage/transport)                                                                                                   | -25°C to +85°C (-13°F to 185°F)                                   |  |
| Permissible humidity (operation) 75% average, 85% occasionally                                                                                |                                                                   |  |
| In the range from -25°C to +55°C (-13°F to +131°F) appropriate measures against increased humidity (> 85%) must be taken.                     |                                                                   |  |
| Permissible humidity (storage/transport) 75% average, 85% occasionally                                                                        |                                                                   |  |
| For a short period, slight condensation may appear on the housing if, for example, the terminal is brought into a closed room from a vehicle. |                                                                   |  |
| Permissible air pressure (operation)  80 kPa to 106 kPa (up to 2000 m [6561.680 ft.] above sea level)                                         |                                                                   |  |
| Permissible air pressure (storage/transport)  70 kPa to 106 kPa (up to 3000 m [9842.520 ft.] above sea level)                                 |                                                                   |  |
| Degree of protection IP 20 according to IEC 60529                                                                                             |                                                                   |  |
| Class of protection Class 3 according to VDE 0106, IEC 60536                                                                                  |                                                                   |  |

| Interface          |              |
|--------------------|--------------|
| INTERBUS interface | Data routing |


| Power Consumption                                 |                                              |
|---------------------------------------------------|----------------------------------------------|
| Communications voltage U <sub>L</sub>             | 7.5 V                                        |
| Current consumption from U <sub>L</sub>           | Approximately 33 mA, typical; 40 mA, maximum |
| I/O supply voltage U <sub>ANA</sub>               | 24 V DC                                      |
| Current consumption from U <sub>ANA</sub>         |                                              |
| No-load operation ( $R_L > 10 \text{ M}\Omega$ )  | 18 mA, typical; 28 mA, maximum               |
| Full load operation ( $R_L = 2 \text{ k}\Omega$ ) | 25 mA, typical; 35 mA, maximum               |
| Total power consumption                           |                                              |
| No-load operation ( $R_L > 10 \text{ M}\Omega$ )  | 0.68 W, typical                              |
| Full load operation ( $R_L = 2 \text{ k}\Omega$ ) | 0.85 W, typical                              |



## Supply of the Module Electronics and I/O Through Bus Terminal/Power Terminal

Connection method Voltage routing

# Derating: Permissible Ambient Temperature Depending on the Current of the Voltage Jumpers $U_M$ and $U_S$ (Total Current)



T<sub>U</sub> Ambient temperature (°C)

Current flowing through voltage jumpers  $U_M$  and  $U_S$  (A)

| Analog Outpu                        | uts                                                                      |                                                                        |
|-------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|
| Number                              |                                                                          | 2                                                                      |
| Signal connection type              |                                                                          | 2-wire technology, single-ended                                        |
| Signals/resolu                      | tion in the process data word (qua                                       | ntization)                                                             |
| Voltage                             | -10 V to +10 V                                                           | 333.33 μV/LSB                                                          |
| Voltage                             | 0 V to +10 V                                                             | 333.33 μV/LSB                                                          |
| Representation                      | n of output value                                                        |                                                                        |
|                                     | -10 V to +10 V                                                           | 16 bit two's complement                                                |
|                                     | 0 V to +10 V                                                             | 16 bit two's complement                                                |
|                                     | the representation of the output val<br>Dutput Value Representation Form | ue in the different formats please refer to the notes ats" on page 15. |
| Smallest DAC                        | quantization step                                                        |                                                                        |
|                                     | -10 V to +10 V                                                           | 2.667 to 13 mV                                                         |
|                                     | 0 V to +10 V                                                             | 2.667 to 12 mV                                                         |
| Basic error lim                     | it                                                                       | ±0.02%, typical, of the output range final value                       |
| Output load                         |                                                                          | 2 kΩ, minimum                                                          |
|                                     | update time including the le of the digital/analog converter             | 1 INTERBUS cycle (dependent on the bus configuration); < 1 ms          |
| Signal rise time                    | e (slew rate)                                                            |                                                                        |
| 10% to 90%                          | of the final value                                                       | 15 μs, typical                                                         |
| 0% to > 99%                         | of the final value                                                       | 31 µs, typical                                                         |
| Signal rise time                    | e (slew rate) -9.0 V to +9.0 V                                           |                                                                        |
| No-load ope                         | ration                                                                   | 0.35 V/μs, typical                                                     |
| With ohmic I                        | oad ( $R_L = 2 \text{ k}\Omega$ )                                        | 0.24 V/μs, typical                                                     |
| With ohmic/or $R_L = 2 k\Omega / C$ | capacitative load<br>C <sub>L</sub> = 10 nF                              | 0.24 V/μs, typical                                                     |
| With ohmic/or $R_L = 2 k\Omega / C$ | capacitative load<br>C <sub>L</sub> = 220 nF                             | 0.09 V/μs, typical                                                     |
| Transient prote                     | ection of the analog outputs                                             | Yes                                                                    |



|                                                                                                                                        | Typical  | Maximum  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Tolerance at 23°C (73.4°F)                                                                                                             | •        |          |
| Total offset voltage                                                                                                                   | ±0.5 mV  | ±4.0 mV  |
| Gain error                                                                                                                             | ±2.5 mV  | ±6.0 mV  |
| Differential non-linearity                                                                                                             | ±1.3 mV  | ±3.9 mV  |
| Total tolerance at 23°C (73.4°F)                                                                                                       | ±4.3 mV  | ±13.9 mV |
| Temperature response at -25°C to +55°C (-13°F to 131°F)                                                                                |          |          |
| Offset voltage drift T <sub>KVO</sub>                                                                                                  | ±2.1 mV  | ±5.0 mV  |
| Gain drift T <sub>KG</sub>                                                                                                             | ±9.2 mV  | ±20.0 mV |
| Total voltage drift T <sub>Ktot</sub> = T <sub>KVO</sub> + T <sub>KG</sub>                                                             | ±11.3 mV | ±25.0 mV |
| Total tolerance of the voltage output<br>(-25°C to 55°C [-13°F to 131°F])<br>Offset error + gain error + linearity error + drift error | ±15.6 mV | ±38.9 mV |

| Tolerance and Temperature Response (Relative Tolerance Values) (The tolerance values refer to the output range final value of 10 V.)   |          |          |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--|
|                                                                                                                                        | Typical  | Maximum  |  |
| Tolerance at 23°C (73.4°F)                                                                                                             |          |          |  |
| Total offset voltage                                                                                                                   | ±0.005%  | ±0.027%  |  |
| Gain error                                                                                                                             | ±0.025%  | ±0.060%  |  |
| Differential non-linearity                                                                                                             | ±0.013%  | ±0.027%  |  |
| Total tolerance at 23°C (73.4°F)                                                                                                       | ±0.09%   | ±0.14%   |  |
| Temperature response at -25°C to +55°C (-13°F to 131°F)                                                                                |          |          |  |
| Offset voltage drift T <sub>KVO</sub>                                                                                                  | 4 ppm/K  | 10 ppm/K |  |
| Gain drift T <sub>KG</sub>                                                                                                             | 18 ppm/K | 40 ppm/K |  |
| Total voltage drift T <sub>Ktot</sub> = T <sub>KVO</sub> + T <sub>KG</sub>                                                             | 23 ppm/K | 50 ppm/K |  |
| Total tolerance of the voltage output<br>(-25°C to 55°C [-13°F to 131°F])<br>Offset error + gain error + linearity error + drift error | ±0.16%   | ±0.39%   |  |

| Additional Tolerances for Electromagnetic Interference                                         |                                                                    |           |  |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------|--|--|
| Type of Electromagnetic Interference                                                           | Typical Deviation of the Output Range Final Value (Voltage Output) |           |  |  |
|                                                                                                | Relative                                                           | Absolute  |  |  |
| Electromagnetic fields;<br>field strength 10 V/m acc. to<br>IEC 61000-4-3 / IEC 61000-4-3      | < ±0.2%                                                            | < ±20 mV  |  |  |
| Conducted interference<br>Class 3 (test voltage 10 V) acc. to<br>IEC 61000-4-6 / IEC 61000-4-6 | < ±2.8%                                                            | < ±280 mV |  |  |



The values are valid for shielded and unshielded twisted actuator cables.

## **Safety Devices**

Transient protection of the analog outputs Yes

ı

## **Electrical Isolation / Isolation of the Voltage Areas**



The electrical isolation of the logic level from the I/O area is ensured through the DC/DC converter.

#### **Common Potentials**

24 V I/O voltage, 24 V segment voltage, and GND have the same potential. FE (functional earth ground) is a separate potential area.

# Separate System Potentials Consisting of Bus Terminal/Power Terminal and I/O Terminal

| - Test Distance                                                                   | - Test Voltage         |
|-----------------------------------------------------------------------------------|------------------------|
| 7.5 V supply (bus logic) / 24 V supply U <sub>ANA</sub> / I/O                     | 500 V AC, 50 Hz, 1 min |
| 7.5 V supply (bus logic) / 24 V supply U <sub>ANA</sub> / functional earth ground | 500 V AC, 50 Hz, 1 min |
| 24 V supply (I/O) / functional earth ground                                       | 500 V AC, 50 Hz, 1 min |

## **Error Messages to the Higher-Level Control or Computer System**

| Failure or dropping of communications voltage | Yes, I/O error message to the bus terminal |
|-----------------------------------------------|--------------------------------------------|
| $U_L$                                         | -                                          |



# **Ordering Data**

| Description                                                                                      | Order Designation  | Order No.  |  |  |
|--------------------------------------------------------------------------------------------------|--------------------|------------|--|--|
| Terminal with two analog voltage outputs                                                         | IB IL AO 2/U/BP    | 27 32 73 2 |  |  |
| You need a connector for the terminal.                                                           |                    |            |  |  |
| Connector with six spring-clamp connections and shield connection (green, not printed) Pack of 5 | IB IL SCN-6 SHIELD | 27 26 35 3 |  |  |
| INTERBUS Inline System Manual                                                                    | IB IL SYS PRO UM E | 27 43 04 8 |  |  |

© Phoenix Contact 05/2000 Subject to technical modification TNR 90 03 92 0

Phoenix Contact GmbH & Co Flachsmarktstr. 8 32825 Blomberg Germany



m + 49 - 52 35 - 3 00



+ 49 - 52 35 - 34 12 00



www.phoenixcontact.com