INTERBUS Inline Terminal With Eight Digital Outputs

This data sheet is only valid in association with the IB IL SYS PRO UM E "Installing and Configuring the INTERBUS Inline product range" User Manual.

Function

The terminal is designed for use within an Inline station. It is used to output digital signals.

Features

- Connections for eight digital actuators
- Connection of actuators in 2-, 3-, and 4-wire
technology
- Nominal current per channel: 0.5 A
- Total current of the terminal: 4 A
- Short circuit and overload protected outputs
- Diagnostic and status indicators

12

Figure 1
IB IL 24 DO 8 terminal with connectors

Please note that the connectors are not supplied with the terminal. Please refer to the ordering data on page 11 to order the appropriate connectors for your application.

Figure 2 IB IL 24 DO 8 with appropriate connectors

Local Diagnostic and Status Indicators

Des.	Color	Meaning
D	Green	Bus diagnostics
$\mathbf{1 , 2}$	Yellow	Status indicators of the outputs

Terminal Assignment for Each Connector

Terminal Point	Assignment
$\mathbf{1 . 1 , 2 . 1}$	Signal output (OUT)
$\mathbf{1 . 2 , 2 . 2}$	Segment voltage U for 4-wire termination Measuring point for the supply voltage
$\mathbf{1 . 3 , 2 . 3}$	Ground contact (GND) for 2-, 3-, and 4-wire termination
$\mathbf{1 . 4 , 2 . 4}$	FE connection for 3- and 4-wire termination

Internal Circuit Diagram

Figure 3 Internal wiring of the terminal points

Key:
\square INTERBUS protocol chip
OPC

㝻 LED

Optocoupler
Transistor
\# \downarrow Digital output

Isolated area
Other symbols are explained in the IB IL SYS PRO UM E User Manual.

Connection Example

\triangle
When connecting the actuators, observe the assignment of the terminal points to the INTERBUS output data (see page 5).

Figure 4 Typical actuator connections
A 4-wire termination
B 3-wire termination
The numbers shown above the terminal indicate the slots for the connectors.

Programming Data

ID code	$\mathrm{BD}_{\text {hex }}\left(189_{\mathrm{dec}}\right)$
Length code	$81_{\text {hex }}$
Process data channel	8 bits
Input address area	0 bytes
Output address area	1 byte
Parameter channel (PCP)	0 bytes
Register length (bus)	1 byte

INTERBUS Process Data

IN process data is not available.

Assignment of the Terminal Points to the OUT Process Data

(Byte.bit) view	Byte	Byte 0							
	Bit	7	6	5	4	3	2	1	0
Assignment	Slot	4		3		2		1	
	Terminal point (signal)	2.1	1.1	2.1	1.1	2.1	1.1	2.1	1.1
	$\begin{aligned} & \text { Terminal point } \\ & (+24 \mathrm{~V}) \end{aligned}$	2.2	1.2	2.2	1.2	2.2	1.2	2.2	1.2
	$\begin{aligned} & \text { Terminal point } \\ & \text { (GND) } \end{aligned}$	2.3	1.3	2.3	1.3	2.3	1.3	2.3	1.3
	$\begin{aligned} & \text { Terminal point } \\ & (\mathrm{FE}) \\ & \hline \end{aligned}$	2.4	1.4	2.4	1.4	2.4	1.4	2.4	1.4
Status indicator	Slot	4		3		2		1	
	LED	2	1	2	1	2	1	2	1

Technical Data

General Data	
Housing dimensions (width x height x depth	$48.8 \mathrm{~mm} \times 120 \mathrm{~mm} \times 71.5 \mathrm{~mm}$ $(1.921 \mathrm{in} . \times 4.724 \mathrm{in} . \times 2.815 \mathrm{in})$.
Weight	130 g (without connector)
Operating mode	Process data operation with 8 bits
Connection method of the actuators	$2-, 3-$ and 4 -wire technology
Permissible temperature (operation)	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
Permissible temperature (storage/transport)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Permissible humidity (operation)	75%, on average, 85%, occasionally

Permissible humidity (storage/transport)
75%, on average, 85%, occasionally
For a short period, slight condensation may appear on the housing if, for example, the terminal is brought into a closed room from a vehicle.

Permissible air pressure (operation)	80 kPa to 106 kPa (up to $2000 \mathrm{~m}[6562 \mathrm{ft}]$ above sea level)
Permissible air pressure (storage/transport)	70 kPa to 106 kPa (up to $3000 \mathrm{~m}[9843 \mathrm{ft}]$ above sea level)
Degree of protection	IP 20 according to IEC 60529
Class of protection	Class 3 according to VDE 0106, IEC 60536

Interface	Through data routing
INTERBUS local bus	

Power Consumption	7.5 V
Communications power	60 mA, maximum
Current consumption from the local bus	0.45 W, maximum
Power consumption from the local bus	$24 \mathrm{~V} \mathrm{DC}($ nominal value $)$
Segment supply voltage U_{S}	$4 \mathrm{~A}(8 \times 0.5 \mathrm{~A})$, maximum
Nominal current consumption at U_{S}	

Supply of the Module Electronics and I/O Through Bus Terminal/Power Terminal

Connection method
Through potential routing

Digital Outputs

Number	8
Nominal output voltage $U_{\text {OUT }}$	24 V DC
Differential voltage for $\mathrm{I}_{\text {nom }}$	$\leq 1 \mathrm{~V}$
Nominal current $\mathrm{I}_{\text {nom }}$ per channel	0.5 A
Tolerance of the nominal current	$+10 \%$
Total current	4 A
Protection	Short circuit; overload

Each of the four channels are thermally coupled, i.e., an error in one channel can affect the other channels.

Nominal load

Ohmic
Lamp
Inductive
$48 \Omega / 12 \mathrm{~W}$
12 W
$12 \mathrm{VA}(1.2 \mathrm{H}, 50 \Omega)$

Signal delay upon power up of

- Ohmic nominal load
- Lamp nominal load
- Inductive nominal load
$100 \mu \mathrm{~s}$, typical
100 ms , typical (with switching frequencies up to 8 Hz ; above this frequency the lamp load responds like an ohmic load) 100 ms , typical ($1.2 \mathrm{H}, 50 \Omega$)

Signal delay upon power down of

- Ohmic nominal load
- Lamp nominal load
- Inductive nominal load

1 ms , typical
1 ms , typical
50 ms , typical (1.2 H, 50Ω)

Switching frequency with

- Ohmic nominal load
| 300 Hz , maximum
This switching frequency is limited by the selected data rate, the number of bus devices, the bus structure, the software, and the control or computer system used.
- Lamp nominal load $\mid 300 \mathrm{~Hz}$, maximum

This switching frequency is limited by the selected data rate, the number of bus devices, the bus structure, the software, and the control or computer system used.

- Inductive nominal load	0.5 Hz, maximum ($1.2 \mathrm{H}, 48 \Omega$)

Digital Outputs (Continued)	
Overload response	Auto restart
Response time with ohmic overload (12 Ω)	3 s , approximately
Restart frequency with ohmic overload	400 Hz , approximately
Restart frequency with lamp overload	400 Hz , approximately
Inductive overload response	Output may be damaged
Response time after short circuit	400 ms , approximately
Reverse voltage endurance against short pulses	Protected against reverse voltages
Strength against permanently applied reverse voltages	Up to 2 A DC
Strength against polarity reversal of the supply voltage	Components on the bus terminal or the power terminal
Strength against permanently applied surge voltage	No
Validity of output data after connection of 24 V voltage supply (power up)	5 ms, typical
Response upon power down	The output follows the supply voltage without delay.
Limitation of the demagnetization voltage induced on circuit interruption	$\begin{aligned} & -15 \mathrm{~V} \leq \mathrm{U}_{\text {demag }} \leq-46 \mathrm{~V} \\ & \left(\mathrm{U}_{\text {demag }}=\text { demagnetization voltage }\right) \end{aligned}$
Single maximum energy in free running	400 mJ , maximum
Protective circuit type	Integrated 45 V Zener diode in output chip
Overcurrent shutdown	At 0.7 A, minimum
Output current when switched off	$300 \mu \mathrm{~A}$, maximum
Output voltage when switched off	2 V , maximum
Output current with ground connection interrupted	25 mA , maximum
Switching power with ground connection interrupted	100 mW at $1 \mathrm{k} \Omega$ load resistance, typical
Inrush current with lamp load	1.5 A for 20 ms , maximum

Output Characteristic When Switched On (Typical)	
Output Current (A)	Differential Output Voltage (V)
0	0
0.1	0.04
0.2	0.08
0.3	0.12
0.4	0.16
0.5	0.20

Power Dissipation	
Formula to Calculate the Power Dissipation of the Electronics	
$P_{\text {tot }}=0.19 \mathrm{~W}+\sum_{\mathrm{n}=1}^{8}\left(0.10 \mathrm{~W}+\mathrm{I}_{\mathrm{Ln}}{ }^{2} \times 0.4 \Omega\right)$	
Where $P_{\text {tot }}$ Total power dissipation of the module n Index of the number of set outputs $n=1$ to 8 I_{Ln} Load current of the output n	
Power Dissipation of the Housing $\mathrm{P}_{\mathrm{HOU}}$	2.7 W, maximum (within the permissible operating temperature)

Concurrent Channel Derating	
Derating	No limitation of the channel simultaneity, no derating

Safety Devices	
Overload/short circuit in segment circuit	Electronic; with two 4-channel drivers

Safety Devices	
Surge voltage	Protective circuits of the power terminal Protection up to 33 V DC
Polarity reversal of voltage supply	Protective circuits of the power terminal It is necessary to protect the voltage supply. The power supply unit should be able to supply 4 times (400\%) the nominal current of the external fuse.
Reverse voltage	Protection up to 2 A DC

Electrical Isolation/Isolation of the Voltage Areas

\triangle
To provide electrical isolation between the logic level and the I/O area, it is necessary to supply the station bus terminal and the digital output terminal described here using the bus terminal or a power terminal from separate power supply units. Interconnection of the 24 V power supplies is not allowed.
(See also the IB IL SYS PRO UM E User Manual).

Common Potentials

24 V main power, 24 V segment voltage, and GND have the same potential. FE is a separate potential area.

$\|$Separate Potentials in the System Consisting of Bus Terminal/Power Terminal and I/O Terminal - Test Distance$\|$ - Test Voltage
5 V supply incoming remote bus/7.5 V supply (bus logic)
5 V supply outgoing remote bus/7.5 V supply (bus logic)
7.5 V supply (bus logic)/24 V supply (I/O)
24 V supply (I/O)/functional earth ground

Error Messages to the Higher-Level Control or Computer System

Short circuit/overload of an output
Yes

An error message is generated when an output is shorted and switched on. In addition, the diagnostic LED (D) flashes on the terminal at 2 Hz (medium) under these conditions.

Operating voltage out of range	No

Ordering Data

Description	Order Designation	Order No.
Terminal with eight digital outputs	IB IL 24 DO 8	2726269
	You need 4 connectors for the terminal.	2726337
I/O connector with eight terminals, spring- clamp connection (green, w/o color print); pack of 10	IB IL SCN-8	
I/O connector with eight terminals, spring- clamp connection (green, with color print); pack of 10	IB IL SCN-8-CP	2727608
"Installing and Configuring the INTERBUS Inline product range" User Manual	IB IL SYS PRO UM E	2743048

Phoenix Contact GmbH \& Co
Flachsmarktstr. 8
32825 Blomberg
Germany

```
簐+49-52 35-300
\(+49-5235-341200\)
```

鳣 Www.phoenixcontact.com

